Mixed Operations with 4 Integers

Name:	Score:
Solve the following mixed operatio	n problems (don't forget BODMAS)
$(-36) \div 6 \ge 2 + (-21) =$	$(-75) \div 15 \ge 6 + (-35) =$
5 - (-40) ÷ (-8) x (-2) =	4 - $(-8) \div (-4) \times (-3) =$
(-15) x (-2) ÷ (-3) - (-40) =	$(-10) \ge (-7) \div (-5) - (-17) =$
$(-30) \div (-6) + 2 \ge 6 =$	$(-40) \div (-5) + 5 \ge 6 =$
$(-32) \div 4 \ge (-3) + 8 =$	(-55) ÷ 11 x (-4) + 8 =
(-12) x (-3) ÷ (-6) - (-10) =	$(-12) \ge (-5) \div (-6) - (-30) =$
$(-20) \div (-4) + 2 \ge 16 =$	$(-60) \div (-4) + 8 \ge 8 =$
$(-24) \div 2 \ge (-3) + 11 =$	$(-20) \div 5 \ge (-2) + 3 =$
$3 - (-8) \div (-2) \times (-8) =$	120 - $(-9) \div (-3) \times (-3) =$
$(-33) \div 3 \ge 4 + (-14) =$	$(-25) \div 5 \ge 3 + (-60) =$
copyright: www.mathinenglish.com	

Answers

Solve the following mixed operation problems (don't forget BODMAS)

 $(-75) \div 15 \ge 6 + (-35) = -65$

 $(-36) \div 6 \ge 2 + (-21) = -33$

$$5 - (-40) \div (-8) \ge (-2) = 15 \qquad 4 - (-8) \div (-4) \ge (-3) = 10$$

$$(-15) \ge (-2) \div (-3) - (-40) = 30 \qquad (-10) \ge (-7) \div (-5) - (-17) = 3$$

$$(-30) \div (-6) + 2 \ge 6 = 17 \qquad (-40) \div (-5) + 5 \ge 6 = 38$$

$$(-32) \div 4 \ge (-3) + 8 = 32 \qquad (-55) \div 11 \ge (-4) + 8 = 28$$

$$(-12) \ge (-3) \div (-6) - (-10) = 4 \qquad (-12) \ge (-5) \div (-6) - (-30) = 20$$

$$(-20) \div (-4) + 2 \ge 16 = 37$$
 $(-60) \div (-4) + 8 \ge 79$

$$(-24) \div 2 \times (-3) + 11 = 47$$
 $(-20) \div 5 \times (-2) + 3 = 11$

$$3 - (-8) \div (-2) \times (-8) = 35 \qquad 120 - (-9) \div (-3) \times (-3) = 129$$

 $(-33) \div 3 \ge 4 + (-14) = -58$ $(-25) \div 5 \ge 3 + (-60) = -75$